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1 Gaussian Inequalities and Markov Techniques for Lifts of
Brownian Motion

1.1 Gaussian-type inequalities

For many stochastic processes of interest, we either can use the Markov property or take
advantage of the Gaussian distribution of the realizations. In the former case, many mar-
tingales become available, and in the latter case, many Gaussian-type inequalities can be
used.

For example, if x : [0, T ]→ Rd is a Gaussian process that is centered (i.e. E[x(t)] = 0 for
all t), the process is determined by its correlation, E[x(t)⊗ x(s)] = R(s, t). For simplicity,
let us assume that x = (x1, . . . , xd) with xi, xj independent for i 6= j. Then R(s, t) is
diagonal.

Example 1.1. If Xi have the same law for i = 1, . . . , d, then R(s, t) = C(s, t)I, where C
is scalar-valued, and I is the identity matrix. Also,

E[|xi(t)− xi(s)|2] = C(t, t) + C(s, s)− 2C(s, t),

and if
E[|xi(t)− xi(s)|2] ≤ c0|t− s|2α,

then we can use Kolmogorov’s continuity theorem to assert that x ∈ Cβ for every β < α.
Indeed, this estimate would imply that

(E[|xi(t)− xi(s)|2n])1/2n ≤ an(E[|xi(t)− xi(s)|2])1/2

≤
√
c0an|t− s|α,

and we can use Kolmogorov’s continuity theorem to obtain control on [xi]α−1/(2n)−ε; this
holds for any n. To see this, observe that if X is normal with mean 0 and E[X2] = A, then

E[etX ] = e
t2

2
A, so that

E[X2n] =
(2n)!

n!2n
(E[X2])n.
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The moral is that in the Gaussian case, we can bound higher moments in terms of the
second moment. The good news is that something similar is also true for martingales.

Rough path theory can be carried out for any Gaussian process, provided that E[|xi(t)−
xi(s)|2] ≤ c0|t− s|2α for some α > 0. For example, we can consider a fractional Brownian
motion that is specified by the requirement that E[|xi(t)− xi(s)|2] = |t− s|2H , where H is
known as the Hurst index.

1.2 Brownian motion as a Markov process

How about the Brownian motion as a Markov process? Let B = (B1, . . . , Bd), where the
Bis are independent standard Brownian motion. As we discussed last time, we can come
up with a candidate for∫ t

s
Bi dBj = lim

n→∞

∑
k:tnk∈[s,t]

Bi(t
n
k)Bj(t

n
k , t

n
k+1), where Dn = {tnk = k/2n : k ∈ Z}.

This is in L2(P), where P is Wiener measure, a probability measure on C([0, T ];Rd). We
had another candidate that we will denote∫ t

s
Bi ◦ dBj := lim

n→∞

∑
k:tnk∈[s,t]

Bi(t
n
k) +Bi(t

n
k+1)

2
Bk(t

n
k , t

n
k+1).

For diagonal terms, we have explicit formulae, namely∫ t

s
Bi dBi =

Bi(t)
2 −Bi(s)2

2
− t− s

2
,

∫ t

s
Bi ◦ dBi =

Bi(t)
2 −Bi(s)2

2
.

Though when i 6= j, we have
∫ t
s Bi dBj =

∫ t
s Bi ◦ dBj because∫ t

s
Bi ◦ dBj −

∫ t

s
Bi dBj = lim

n→∞

1

2

∑
tnk∈[s,t]

Bi(t
n
k , t

n
k+1)Bj(t

n
k , t

n
k+1),

and

E

 ∑
tnk∈[s,t]

Bi(t
n
k , t

n
k+1)Bj(t

n
k , t

n
k+1)

2 =
∑

tnk∈[s,t]

E[Bi(t
n
k , t

n
k+1)

2]E[Bj(t
n
k , t

n
k+1)

2]

≈ 2n(t− s)2−n2−n

→ 0.

In summary,

BItô(s, t) = BStrat(s, t)− 1

2
(t− s)I,
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where I is the identity matrix.
However, we need to show that (B,BItô) ∈ Rα for any α < 1/2. We have done with

the B part. We get our estimate for BItô using the fact that Mi,j(t) =
∫ t
0 Bi dBj is a

martingale. We write Ft for the σ-algebra generated by (B(θ) : θ ∈ [0, t]). Then M(t) is a
martingale if E[M(t) | Fs] = M(s), or E[M(t)−M(s) | Fs] = 0.

For example, B(t) itself is a martingale, and observe that E[
∫ t
s Bi dBj | Fs] = 0. Indeed,

E

 ∑
k/2n∈[s,t]

Bi(t
n
k)Bk(t

n
k , t

n
k+1) | Fs

 = E

 ∑
k/2n∈[s,t]

Bi(s)Bj(t
n
k , t

n
k+1) | Fs


≈ E[Bi(s)Bj(s, t)]

= 0.

First, we can show that

E[Mi,j(t)
2] = E

[∫ t

0
Bi(s)

2 ds

]
,

which yields

E[(BItô
i,j )2] = E

[(∫ t

s
(Bi(θ)−Bi(s)) dBj(θ)

)2
]

= E
[∫ t

s
(Bi(θ)−Bi(s))2 dθ

]
=

∫ t

s
(θ − s) dθ

=
(t− s)2

2
.

Here, if we write Ai,j(t) =
∫ t
0 Bi(θ)

2 dθ, then Mi,j(t)
2 − Ai,j(t) is again a martingale.1 We

have the following fundamental inequality in this context that is due to Burkholder-Davis-
Gundy (Doob’s inequality):

Lemma 1.1. If M and M2−〈M〉 = M2− [M ] = M2−A are martingales with M(0) = 0,
define M∗(t) = sups∈[0,t] |M(s)|. Then

E[M∗(t)q] ≤ cq E[Aq/2].

1This is not a coincidence. For any such martingale, if we square it, there is a monotone function we
can subtract to get another martingale.
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Now, for our example,

E[|BItô(s, t)|q] ≤ cE

[∣∣∣∣∫ t

s
Bi(s, θ)

2 dθ

∣∣∣∣q/2
]

≤ cE

[(
sup
θ∈[s,t]

|Bi(s, θ)|

)q]
|t− s|q/2

≤ c′|t− s|αq|t− s|q/2.

So
(E[|BItô(s, t)|q])1/q ≤ c|t− s|α+1/2.
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